Ma

KEY STAGE 3

LEVELS
4-7

Year 9 optional mathematics tests

 Teacher's guide

QCDA wishes to make its publications widely accessible.
Please contact us if you have any specific accessibility requirements.

First published 2011
© Qualifications and Curriculum Development Agency 2011

ISBN 978-1-84962-273-8

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Printed in Great Britain by QCDA under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

Qualifications and Curriculum Development Agency
53-55 Butts Road
Earlsdon Park
Coventry CV1 3BH
www.qcda.gov.uk

Contents

Introduction 4
Supporting teacher assessment 5
Section A: Formal administration 6
Access arrangements 8
Marking the tests 10
General guidance for marking 11
Mark scheme for Paper 1 18
Index to mark scheme for Paper 1 41
Mark scheme for Paper 2 42
Index to mark scheme for Paper 2 65
Section B: Using the test outcomes 66
Level thresholds 67
Useful information 68

Introduction

The year 9 optional mathematics tests provide schools with a tool to help monitor pupils' progress against national standards at the end of key stage 3 and an instrument for gathering assessment evidence in support of teacher judgements.

The test materials may be used in whole or in part at any point during key stage 3 to provide valuable qualitative information about pupils' strengths and weaknesses. Teachers may choose to use the materials alongside written work, class discussions and group activities in a variety of contexts. When used in this way the materials can yield evidence in support of teacher assessment, including national curriculum level judgements.

The tests follow a similar structure to the previously statutory end of key stage 3 mathematics tests taken by pupils in year 9 . They can be administered and marked formally and the results may be used to determine a national curriculum level. Even when used in this way, there is still useful additional information that can be discerned from pupils' responses. This guide explains the options in more detail.

The mathematics tests are available in two tiers, covering levels 4-6 and 5-7.

Supporting teacher assessment

The optional key stage 3 mathematics tests aim to be supportive of school assessment arrangements and can be used as part of an integrated approach to teacher assessment. Assessing Pupils' Progress (APP) materials are also available and may be used alongside these tests. APP is a structured approach to periodic assessment, enabling teachers to:

- use information about pupils' strengths and weaknesses to improve teaching, learning and rates of pupils' progress;
- track pupils' progress over a key stage or longer.

The optional test materials may be used in a variety of contexts in order to give pupils the broadest opportunities to show what they can do. Individual questions and pupil responses can be used to stimulate class discussions and group activities, contributing to a rich evidence base for teacher assessment. The notes on individual questions make some specific suggestions for teaching and learning (see Section B).

Section A:

Formal administration

The guidance in this section must be followed in order to produce a national curriculum level for each pupil using the level threshold supplied (page 67).

Administering the tests

This information is provided for anyone who is involved in administering the tests, including teachers, other members of school staff, and other adults who may be assisting in test administration.

The tests should be carried out under test conditions; they may be held in a school hall, classroom or any other suitable accommodation.

Equipment needed for the papers

In addition to pens, pencils, rubbers and rulers, the following equipment will need to be available to pupils when they take the papers:

Paper 1: Tracing paper (optional) - tiers 4-6 and 5-7.
Paper 2: Scientific or graphic calculator (essential) - tiers 4-6 and 5-7.
A pair of compasses - tiers 4-6 and 5-7.
Pupils must not have access to a calculator during Paper 1.

Timing

Pupils should be given 60 minutes to complete each test. You may indicate to the pupils when they are halfway through the time allowed for the test, and again a few minutes before they have to stop.

Introducing the tests

Test administrators are advised to draw pupils' attention to the 'Remember' section on the front cover of the test booklet, and to the instructions on page 2. Care should be taken when distributing the papers to ensure each pupil is given the correct tier for the test.

Examples of what might be said at the beginning of the tests are given below. Test administrators might find these useful when preparing opening comments for the mathematics tests.

- This is the year 9 mathematics test Paper 1 [or Paper 2].
- The test is one hour long.
- For Paper 2, make sure you have the same tier as you had for Paper 1.
- Check the list of equipment on the front cover of your paper, to make sure you have what you may need.
- Write your name, class and the date on the front of the test paper.
- The test starts with easier questions. Try to answer all the questions in the booklet.
- Write all your answers and working on the test paper - do not use rough paper. Marks may be awarded for your working even if your answer is wrong.
- The number of marks allocated to each part of a question is indicated beside each question. Where two or three marks are available, two or three distinct points are required for a full answer.
- Remember to check your work carefully.
- I will tell you when you are halfway through the test and also tell you when you are into the last five minutes. I will tell you when the test is over and when to stop writing.
- If you have any urgent questions during the test, you should put your hand up and wait for someone to come to you. You must not talk to each other.
- You should now open your test booklet. The test has started.

For Paper 2:

- You may use a calculator in this test. Make sure you have your calculator and that it is working properly.

Helping pupils during the tests

Teachers should ensure that pupils are clear about what they have to do but should not provide help with the mathematics being tested. Teachers should not help by explaining specific mathematical terms, nor by interpreting graphs or mathematical tables or diagrams.

If a pupil asks for clarification of a mathematical symbol or notation then the teacher may read it to the pupil but should not indicate the operation or process to be used.

Access arrangements

These tests have been designed to be accessible to the majority of pupils working at the levels that the tests assess. A small number of pupils may require additional arrangements to be made in order for them to access the tests.

For some pupils, for example those who suffer from attention-related difficulties, breaking the tests into shorter sessions may be beneficial. For others, working separately away from the main group with an assistant might aid concentration and more closely resemble their normal working conditions.

If you have chosen to use the year 9 optional test in mathematics with the full cohort, you are free to make adaptations to the tests that will improve their accessibility for pupils with special educational needs and for pupils for whom English is an additional language. In making any changes to the way the tests are used, the focus should be on the assessment needs of the individual pupil. Any adaptations should be similar to those made to the materials which pupils work with in the classroom.

Examples of appropriate adaptations

School-based adaptations to the tests may include:

- allowance of up to 25% additional time
- use of readers, prompters, signers and amanuenses
- provision of tactile shapes and number cards
- use of transcripts and word processors
- separating the tests into sections, taping, photocopying onto coloured paper, use of coloured overlays, use of apparatus
- enhancing the shading on diagrams, including charts and graphs, to increase visual clarity
- enlarging diagrams, cutting them out, embossing or mounting them on card or other material according to normal classroom practice
- translation of words or phrases in the test papers that are likely to prove difficult for pupils for whom English is an additional language, and also if required for pupils who use British sign language (BSL) or other sign-supported communication
- use of bilingual dictionaries.

Access arrangements should not provide an unfair advantage. It is important to ensure that any assistance given does not alter the nature of the test questions, and that any answer given is the pupil's own.

Questions that must not be enlarged:

If your school needs to enlarge questions or parts of questions to meet the specific requirements of individual pupils, and has not ordered the enlarged papers from the modified test agency, the following questions must not be enlarged. This is because enlargement may affect the pupils' responses.

Modified versions of the tests

Modified large print, enlarged print and braille test papers for visually impaired pupils are available from the QCDA modified test agency. Additional guidance notes for teachers administering the modified versions of the tests are supplied with the test papers.

If you have any questions about ordering the modified tests, contact the QCDA modified optional test agency on: 0300 3033019 .

For further guidance on access arrangements please refer to Access arrangements for key stage 3 non-statutory tests, available on the QCDA website at: http://www.qcda.gov.uk/accessarrangements

Marking the tests

The structure of the mark scheme

Pages 11-17 of this booklet contain guidelines on how to mark the tests. This general guidance should be observed unless specific instructions to the contrary are given, and should be read before marking begins. It could form the basis of departmental INSET to ensure standardisation of marking within, and between, schools.

The marking information for questions within the written tests is set out in the form of tables which start on page 18 (Paper 1) and page 42 (Paper 2). The columns on the lefthand side of each table provide a quick reference to the question number, question part and the total number of marks available for that question part. There is also an indication of where it may be necessary to refer to the general guidance.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative
- examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are minimally acceptable or unacceptable. Other guidance, such as when 'follow-through' is allowed, is provided as necessary.

For some graphical and diagrammatical responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

Recording marks on the test paper

All questions, even those not attempted by the pupil, should be marked, with a 1 or a 0 entered in each marking space. Where two marks can be split into one mark gained and one mark lost, with no explicit order, then this should be recorded by the marker as 1

0

The total marks awarded for a double page can be written in the box at the bottom of the right-hand page, enabling the correct total to be more easily transferred to the front of the test paper.

Finding levels

A total of 120 marks is available at each tier (60 from Paper 1 and 60 from Paper 2). The sum of the marks allocated from these two components indicates the level at which the pupil is working.

The level thresholds can be found on page 67.

General guidance for marking

Answers that are numerically or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating specifically to the marking of questions that involve money, negative numbers, time, measures, coordinates, probability or algebra. Unless otherwise specified in the mark schemes, markers should apply the following guidelines in all cases.

What if...

The pupil's response is numerically or algebraically equivalent to the answer in the mark scheme.

The pupil's response does not match closely any of the examples given.

The pupil has responded in a non-standard way.

There appears to be a misreading affecting the working.

No answer is given in the expected place, but the correct answer is given elsewhere.

The final answer is wrong, but the correct answer is shown in the working.

The pupil's answer is correct but the wrong working is shown.

Marking procedure

Markers should award the mark unless the mark scheme states otherwise.

Markers should use their judgement in deciding whether the response corresponds with the statement of the requirements given in the 'Correct response' column. Refer also to the 'Additional guidance'.

Calculations, formulae and written responses do not have to be set out in any particular format. Pupils may provide evidence in any form as long as its meaning can be understood. Diagrams, symbols or words are acceptable for explanations or for indicating a response. Any correct method of setting out working, however idiosyncratic, should be accepted. Provided there is no ambiguity, condone the continental practice of using a comma for a decimal point.

This is when the pupil misreads the information given in the question and uses different information without altering the original intention or difficulty level of the question. For each misread that occurs, deduct one mark only.

Where a pupil has shown understanding of the question, the mark(s) should be given. In particular, where a word or number response is expected, a pupil may meet the requirement by annotating a graph or labelling a diagram elsewhere in the question.

Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether:

- the incorrect answer is due to a transcription error

If so, award the mark.

- in questions not testing accuracy, the correct If so, award the mark. answer has been given but then rounded or truncated
- the pupil has continued to give redundant extra working which does not contradict work already done
- the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.

If so, award the mark.

If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.

A correct response should always be marked as correct unless the mark scheme states otherwise.

What if...

The pupil has made a conceptual error.

The correct response has been crossed or rubbed out and not replaced.

More than one answer is given.

The pupil's answer correctly follows through from earlier incorrect work.

The answer is correct but, in a later part of the question, the pupil has contradicted this response.

The pupil's accuracy is marginal according to the overlay provided.

The pupil has drawn lines which do not meet at the correct point.

Marking procedure

In some questions, a method mark is available provided the pupil has made a computational, rather than conceptual, error. A computational error is a 'slip' such as writing $4 \times 6=18$ in an otherwise correct long multiplication. A conceptual error is a more serious misunderstanding of the relevant mathematics; when such an error is seen, no method marks may be awarded. Examples of conceptual errors are:

- misunderstanding of place value, such as multiplying by 2 rather than 20 when calculating 35×27
- subtracting the smaller value from the larger in calculations such as $45-26$ to give the answer 21
- incorrect signs when working with negative numbers.

Any legible crossed or rubbed out work that has not been replaced should be marked according to the mark scheme. If the work is replaced, then crossed or rubbed out work should not be considered.

If all answers given are correct, or a correct range is given, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.

Follow-through marks may be awarded only when specifically stated in the mark scheme, but should not be allowed if the difficulty level of the question has been lowered. Either the correct response or an acceptable follow-through response should be marked as correct.

A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.

Overlays can never be 100% accurate. However, provided the answer is within or touches the boundaries given, the mark(s) should be awarded.

Markers should interpret the phrase 'slight inaccuracies in drawing' to mean meeting within or on a circle of radius 2 mm with centre at the correct point.

within the circle accepted

on the circle accepted

outside the circle not accepted

Responses involving money

Responses involving negative numbers

\checkmark Accept	\mathbf{x} Do not accept			
For example:		To avoid penalising the error below more than once within each question, do not award the mark for the first		
-2			\quad	occurence of the error within each
:---				
question. Where a question part carries				
more than one mark, only the final mark				
should be withheld.				

Responses involving time

	\checkmark Accept	x Do not accept
A time interval for example: 2 hours 30 minutes	$\checkmark 2$ hours 30 minutes Any unambiguous, correct indication, eg $2 \frac{1}{2}$ hours 2.5 hours 2h 30 2h 30 min 230 Digital electronic time, ie 2:30	x Incorrect or ambiguous time interval, eg 2.3 hours 2.3h 2h 3 2.30 min 2.30 2-30 2,30 2.3
A specific time for example: 8:40am, 17:20	8:40am 8:40 twenty to nine Any unambiguous, correct indication, eg 08.40 8.40 0840 840 8-40 8,40 Unambiguous change to 12 or 24 hour clock, eg $17: 20$ as $5: 20$ pm or 17:20pm	x Incorrect time, eg 8.4am 8.40pm Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 , eg 840 8:4:0 8.4 084 84

Responses involving measures

	\checkmark Accept	x Do not accept
Where units are given (eg kg, m, l) for example: 8.6 kg	8.6 kg Any unambiguous indication of the correct measurement, eg 8.60 kg 8.6000 kg 8 kg 600 g	x Incorrect or ambiguous use of units, eg 8600 kg

Note

If a pupil leaves the answer box empty but writes the answer elsewhere on the page, then that answer must be consistent with the units given in the answer box and the conditions listed above.

If a pupil changes the unit given in the answer box, then their answer must be equivalent to the correct answer, using the unit they have chosen, unless otherwise indicated in the mark scheme.

Responses involving coordinates

	\checkmark Accept	\times Do not accept
For example: $(5,7)$	\checkmark Unconventional notation, eg $(05,07)$ (five, seven) $\begin{aligned} & x \quad y \\ & (5,7) \\ & (x=5, y=7) \end{aligned}$	x Incorrect or ambiguous notation, eg $\begin{aligned} & (7,5) \\ & y \quad x \\ & (7,5) \\ & (5 x, 7 y) \\ & \left(5^{x}, 7^{y}\right) \\ & (x-5, y-7) \end{aligned}$

Responses involving probability

	\checkmark Accept		Take care \times Do not accept
A numerical probability should be expressed as a decimal, fraction or percentage only. for example: $0.7 \quad \frac{7}{10} \quad 70 \%$	\checkmark Equivalent decimals, fractions and percentages, eg $\begin{aligned} & 0.700 \\ & \frac{70}{100} \\ & \frac{35}{50} \\ & 70.0 \% \end{aligned}$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0, eg $\frac{70}{100}=\frac{18}{25}$!	The first four categories of error below should be ignored if accompanied by an acceptable response, but should not be accepted on their own. However, to avoid penalising the first three types of error below more than once within each question, do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld. A probability that is incorrectly expressed, eg 7 in 10 7 over 10 7 out of 10 7 from 10 A probability expressed as a percentage without a percentage sign. A fraction with other than integers in the numerator and/or denominator. A probability expressed as a ratio, eg 7:10 7:3 7 to 10 A probability greater than 1 or less than 0

Responses involving the use of algebra

Mark scheme for Paper 1

Tier \& Question				Interpreting
4-6	5-7			
1		Mark	Correct response	Additional guidance
		1 m	Gives a correct interpretation eg - Girls with blue eyes - Girls that do not have brown eyes	
		1 m	Gives a correct interpretation eg - Girls in total - Girls with brown eyes and blue eyes - Girls - That are not boys - 15 girls, 7 with brown eyes and 8 with blue	\times Reference to girls omitted eg - Brown eyes and blue eyes ! Reference only to component parts Condone eg - 7 girls with brown eyes and 8 with blue (no linking to 15)
		1 m	Gives a correct interpretation eg - Pupils altogether - Girls and boys - Boys and girls with brown eyes and boys and girls with blue eyes - Children	\checkmark Reference to boys and/or girls omitted eg - Altogether - All of them - Brown eyes and blue eyes

Tier \& Question				Find the ways	
4-6	5-7				
4		Mark	Correct response	Additional guidance	
		1 m	30	! Operation repeated Condone eg, for the first mark accept - +30	
		1 m	4		
		1 m	2		
		1 m	20		

Mark Correct response
1m
Writes three correct numbers
eg

- $10 \times 10-20$
- $9 \times 11-19$
- $8 \times 10-0$
- $8 \times 5--40$
$1 m$
Writes three correct numbers
eg
- $100 \times 10-200$
- $20 \times 45-100$
- $11 \times 80-80$

8
Mark Correct response
Additional guidance
1 m
Indicates the correct number eg

- 2
- 2.0

1 m
Indicates the correct number
eg

- 0.65
- 0.650
- $\frac{65}{100}$

Mark Correct response
2m Completes the drawing to show four squares that cover four faces of the cube
eg
-

-

-

Additional guidance
! Lines not ruled or accurate
Accept provided the pupil's intention is clear
! Edge(s) of grid used as edge(s) of shape eg
-

Condone
\checkmark Extra internal lines drawn eg
-

Internal lines omitted

eg

Incorrect strip
eg
-

Tier \& Question				Time differences
4-6	5-7			
10	1	Mark	Correct response	Additional guidance
a	a	1 m	6	! -6 Condone
b	b	1 m	Indicates, in either order Hong Kong and San Juan or Dhaka and Chicago or Dubai and Los Angeles	\checkmark Unambiguous indication eg - HK and SJ - Dh and C - Du and LA - Du and Los - Pairs of cities shown on the table ! Ambiguous indication eg - D (could be Dhaka or Dubai) - H (could be Hong Kong or Harare) - L (could be Los Angeles or London) Penalise only the first occurrence ! Numbers used eg - -8 and 4 (for LA and Dubai) Penalise only the first occurrence
c	c	1 m	Indicates one of the pairs of cities above that has not already been credited	

Tier \& Question	
$4-6$	$5-7$
12	3

Mark Correct response \quad Additional guidance \quad Thinking $\boldsymbol{a} \boldsymbol{b}$

1 m Gives both correct values, ie
$a=6 \quad b=4$

Tier \& Question		Mark		Additional guidance	Regular polygons
4-6	$\begin{gathered} 5-7 \\ 4 \end{gathered}$				
13			Correct response		
		1 m	48		
		1 m	7		
		1 m	Pentagon		

Tier \& Question				Barcelona
4-6	5-7			
14	5	Mark	Correct response	Additional guidance
a	a	1 m	June and July (in either order)	\checkmark Unambiguous indication
b	b	1 m	Makes a correct statement about temperature and rainfall eg - They have similar temperatures but different amounts of rain - It is drier in May but just as warm - May rain 55 and temperature 21 October rain 85 and temperature 21	! Inaccurate reading of graph Condone within a correct explanation eg, accept - In both months the temperature is 20 but the rainfall is 50 in May and 90 in October
	c	1m	States or implies that different things are being measured eg - They are both 21 but one is rainfall and the other is temperature - The numbers are the same but they are different things - Rainfall is in mm and temperature is in ${ }^{\circ} \mathrm{C}$	\checkmark Minimally acceptable explanation eg - Different things

Tier \& Question			Correct response	Dividing square
15	6	Mark		Additional guidance
	a	$2 m$ or 1 m	Draws a 3×3 square split into 6 smaller squares using the dots of the grid eg Indicates dots which would be all the vertices of the 3×3 square and two vertices of the 2×2 square even if no lines are drawn eg - \odot \square	\checkmark Diagram in any orientation ! Lines not ruled or accurate Accept slight inaccuracies in drawing provided there is an intention to draw straight sides x Additional incorrect vertices shown eg - . x One vertex of 3×3 square missing eg -
	b	2 m	Draws a 4×4 or 5×5 square split into 8 smaller squares using the dots of the grid eg Draws a sketch diagram showing how to split a large square into 8 smaller squares but does not use the dots of the grid, or uses them inaccurately, or uses them accurately but omits one vertex	\checkmark Diagram in any orientation ! Lines not ruled or accurate Accept slight inaccuracies in drawing provided there is an intention to draw straight sides

Tier \& Question				Additional guidance ${ }^{\text {Cards for fractions }}$	
16	7	Mark	Correct response		
a	a	1m	$\frac{2}{15}$		
b	b	2m or 1m	Gives a pair of equivalent fractions which use 5,15 and one of 2,7 or 11 eg - $\frac{2}{5}$ and $\frac{6}{15}$ - $\frac{5}{15}$ and $\frac{2}{6}$ - $\frac{11}{5}$ and $\frac{33}{15}$ Gives a pair of equivalent fractions which use two of $2,5,7,11$ and 15 eg - $\frac{5}{15}$ and $\frac{1}{3}$ - $\frac{2}{10}$ and $\frac{11}{55}$ - $\frac{1}{7}$ and $\frac{15}{105}$		

Tier \& Question
17
8-7
8

Tier \& Question			
4-6	5-7		
18	9	Mark	Correct response
		1 m	Indicates Win and gives a correct explanation eg - $\frac{7}{12}>\frac{1}{2}$ - The numerator is more than half of the denominator - Six out of 12 is half, and this is more - 6 is half of 12 and $7>6$ - The probability of losing is $\frac{5}{12}$ therefore he is more likely to win - $\frac{7}{12}>\frac{5}{12}$

Win or lose

Additional guidance

Minimally acceptable explanation
eg

- Half of 12 is 6
- 7 is over half way
- It's over half
- 7 is more than half
- More than a half chance
- Because 7 is only 5 away from 12
- $7>6$
- $7>5$
- Losing is $\frac{5}{12}$
- An even chance is $\frac{6}{12}$
x Incomplete or incorrect explanation eg
- He's more likely to win
- The number at the top is lower than at the bottom
- 7 is 5 away from 12
- 7 is close to 12
- It is over 6
- He has more than half \% probability to win

Tier \& Question		Mark	Correct response
4-6	5-7		
20	11		
a	a	1 m	(Student) G
b	b	2 m	$32,33,34,35$ or 36
			or
			A range that uses two of these values eg - 33-34 - 32 to 36
		$\begin{aligned} & \text { or } \\ & 1 \mathrm{~m} \end{aligned}$	31 or 37
			or
			A decimal number between 32 and 36

Tests

Additional guidance

\checkmark Unambiguous indication

x Decimal number

For $2 m$, the answer must be a whole number

For 1m range given
eg

- 31-35
- 36-37

Mark

Indicates Yes and gives a correct explanation
eg

- $6 \times 3 \div 2=3 \times 6 \div 2$
- If you turn the second one round they have the same base and the same height
- They are both 9
- Both are half a 6 by 3 rectangle
- Completes 6 by 3 rectangles and indicates that $\frac{1}{2}$ is shaded in both

Triangle two

Additional guidance

Minimally acceptable explanation
eg

- 9
- They both have the same number of squares
x Incomplete or incorrect explanation
eg
- I counted
- They both have 12 squares
- They are both 6 by 3

Tier \& Question				Additional guidance Glass bottles
4-6	5-7			
22	13	Mark	Correct response	
		$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	24 Shows both $\times 60$ and $\div 25$, or equivalent operations eg - $10 \div 5 \times 12$ or Method uses repeated addition with only one computational error eg - $1=25,2=50,3=1 \mathrm{hr} 15,4=1 \mathrm{hr} 40$, $5=2 \mathrm{hr} 15$ (error), $10=4 \mathrm{hr} 30$, $20=9 \mathrm{hrs}, 22=9 \mathrm{hrs} 50$ Answer $=22$ bottles	```x Use of 1hr = 100 min eg - }1=25,2=50,3=75,4=1\textrm{hr 10 < 4 = 40 bottles```

Tier \& Question				Adults studying
24	15	Mark	Correct response	
		1 m	Gives a correct explanation eg - If you add the different values you will get more than 100% so some people must have said that they used more than one way - The percentages sum to more than 100 - The first two are nearly 50% each, but there is only 100% altogether so some adults do two or more	\checkmark Minimally acceptable explanation eg - More than 100 - $48+46+30>100$! Explanation uses the total percentage Do not accept a total of more than 200% eg - The percentages add up to 229 which is more than 100 x Incomplete or incorrect explanation eg - The percentages do not add up to 100 - $48+46+30=114$ (error) which is more than 100

Mark Correct response
2m
Indicates Both equally likely and gives a correct explanation
eg

- Anna has 20p, 10p

Her probability is $\frac{1}{2}$
Tom has 10p, 10p, 5p, 5p
His probability is $\frac{2}{4}=\frac{1}{2}$

- Tom has two 10p coins and two other coins Anna has one 10p coin and one other Both have a half chance of choosing a 10p coin
- For Tom the ratio of 10p coins to other coins is $2: 2=1: 1$
For Anna the ratio is also $1: 1$
- For Tom, the ratio of total coins to 10 p coins is $4: 2$
For Anna, the ratio of total coins to 10 p coins is $2: 1$
$4: 2=2: 1$

Incorrect or no box ticked but gives a correct explanation
or
For both Tom and Anna, gives the correct coins eg

- Anna has 20p, 10p

Tom has 10p, 10p, 5p, 5p
or
For Anna or for Tom, gives the correct probability and the correct number of $10 p$ coins
eg

- Tom 10, 10, 5, 5
$\frac{1}{2}$
- Tom has 2×10 p coins and 2 other coins Half chance
- Anna has one 10p coin and 1 other coin Probability $=0.5$
or

Gives the correct probability or the correct ratio of 10p coins to other coins and indicates that this applies to both Tom and Anna
eg

- Both have a half chance of choosing a 10p coin
- The ratio of 10 p coins to other coins is $1: 1$ (with 'both equally likely' ticked)

Coins and probability

Additional guidance

Minimally acceptable explanation
eg

- 20, 10 and $10,10,5,5$ 1 in 2,2 out of 4 (condone notation given context)
- Tom $2 \times 10 p$ Anna $1 \times 10 p$
$\frac{1}{2}$
- Tom $=2: 2$ Anna $=1: 1$
- He 4:2 She 2:1
x For 2m, incomplete or incorrect explanation eg
- Both half
- She has 20 and 10 He has 10, 10, 20 (error), 5 Both half

Minimally acceptable explanation

 eg- Anna $=20,10$

Tom $=10,10,5,5$

Minimally acceptable explanation

eg

- Tom has $2 \times 10 p$ Half
- Anna has one 10p 0.5

Minimally acceptable explanation

 eg- Half (with 'both equally likely' ticked)
- Both 1 : 1

Tier \& Question				Tile design
26	17	Mark	Correct response	Additional guidance
a	a	1 m	Gives a correct response eg - $360-90=270,270 \div 2=135$ - $135+135+90=360$	\checkmark Minimally acceptable explanation eg - Half of 270 - $90+45$ - 180-45 - $135+45=180$ - $\frac{3}{4}$ of 180 x Incomplete explanation eg - It is halfway between 90° and 180°
b	b	1 m	Gives a correct ratio eg - $1: 3$ - $2: 6$	

Tier \& Question		Mark	Correct response
4-6	5-7		
27	18		
a	a	1 m	E and writes the correct ordinate for their chosen line eg - A goes through $(0,-1)$ - B goes through $(0,1)$ - C goes through $(0,-2)$ - D goes through (0, 2)
b	b	1 m	Writes the correct ordinate for their chosen line eg - A goes through $(1,0)$ - B goes through $(-1,0)$ - C goes through $(2,0)$ - D goes through $(-2,0)$

Passing through

Additional guidance

\checkmark Unambiguous indication
eg

- E circled
- $y=x$
! Incorrect algebra used within unambiguous indication
Penalise only the first occurrence
eg, for part (a)
- Straight line $\underline{x-1}$ goes through ($0,-1$)
eg, for part (b)
- Straight line $\underline{x+1}$ goes through ($-1,0$
! The same straight line chosen for part (b) as in part (a)
Condone
x Line E chosen for part (b)

Tier \& Question				Additional guidance	nth term
4-6	5-7				
	19	Mark	Correct response		
		$1 \mathrm{~m}$ $1 \mathrm{~m}$	Completes the nth term for sequence B, ie $22-2 n$ Gives all three correct terms, ie $14,8,2$! Algebra See general guidance on page 17 $\checkmark 22-\mathbf{2 \times n}$	

Tier \& Question		Mark	Correct response
4-6	5-7		
	21		
		1 m	For B to C, centre (7, 0)
		1 m	For C to A , centre $(3,10)$
		1 m	For C to A, scale factor $\pm \frac{1}{4}$ or equivalent

Enlarging round
Additional guidance
\checkmark Gives an answer of (7, 12.(...))
$x-\frac{1}{4}$ with $(3,10)$ as centre of enlargement

| Tier \& Question
 $4-6$
 $5-7$
 $\mathbf{2 4}$ | Mark | Correct response | Additional guidance |
| :---: | :---: | :---: | :---: | :---: |
| a | $\mathbf{1 m}$ | 181 cm | |
| b | $\mathbf{1 m}$ | 24% | ! Percentage sign repeated
 Ignore |

Correct response
Additional guidance
2m
Gives all four correct decisions, ie

or
1m
Gives any three correct decisions

Index to mark scheme for Paper 1

Tier		Question	Page
4-6	5-7		
1		Interpreting	18
2		Properties of shapes	19
3		Which one?	20
4		Find the ways	20
5		Pairs of cubes	21
6		Tennis court	22
7		Write numbers	22
8		Number lines	22
9		Paper and cube	23
10	1	Time differences	24
11	2	Dice	25
12	3	Thinking $a b$	25
13	4	Regular polygons	25
14	5	Barcelona	26
15	6	Dividing square	27
16	7	Cards for fractions	28
17	8	Solid fit	29
18	9	Win or lose	30
19	10	Ticket price	31
20	11	Tests	32
21	12	Triangle two	32
22	13	Glass bottles	33
23	14	Wrapping	33
24	15	Adults studying	34
25	16	Coins and probability	35
26	17	Tile design	36
27	18	Passing through	36
	19	nth term	37
	20	Losing phones	37
	21	Enlarging round	37
	22	Journey	38
	23	Percentage up and down	38
	24	Sunflowers	38
	25	Which is greater?	39
	26	Area triangle	40
	27	Odd or even?	40

Mark scheme for Paper 2

Tier \& Question				Order matters
4-6	5-7			
1		Mark	Correct response	Additional guidance
		2 m	Gives only the three correct values, in any order eg - 794 947 974	! Correct values repeated Condone eg, for 2 m accept - 794 947 974 947 eg, for 1 m accept - 947 974 947
		$\begin{gathered} \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Gives any two correct values with no incorrect or Gives all three correct values with not more than one incorrect	x Three correct values with more than one incorrect eg - 947 749 (error) 974 794 749 (error)

Tier \& Question				Additional guidance \quad Pentagons or not
$\begin{gathered} 4-6 \\ 2 \end{gathered}$	5-7	Mark	Correct response	
a		1 m	Indicates Yes and gives a correct explanation eg - Both shapes have 5 sides	\checkmark Minimally acceptable explanation eg - 5 - 5 angles - 5 points \checkmark Explanation refers generally to the number of sides without specifically giving the number 5 eg - I counted the number of sides - Same number of sides x Incomplete explanation eg - Same sides
b		1 m	Indicates No and gives a correct explanation eg - The first is regular as it has equal length sides and equal sized angles but the second doesn't - The second shape has different length sides - The angles in the second shape are not all the same - The first shape has lines of symmetry but the second one does not - They might both not be regular, the first looks as if it is but you don't know for sure that it has equal sides	\checkmark Correct explanation given in part (a) eg - Both are pentagons because they have 5 sides but the second is irregular \checkmark Minimally acceptable explanation eg - Not all sides the same - Different angles - The first one is - Second isn't shaped like one - One shape has equal sides - One shape has no symmetry - They do not have the same amount of symmetry x Incomplete or incorrect explanation eg - Not the same - The shapes are different - One of them isn't shaped like one - No angles are the same - Equal sides - The first one is but the second one is not the correct shape for a pentagon x Explanation implies 'regular' means 'ordinary' or 'usual' or 'normal' eg - You don't see the second shape very often

Multiple coins

Mark Correct response

2m
Gives all five correct ways, in any order eg

or
1 m
Indicates at least three correct ways, even if there is duplication or omission
or
Indicates all five ways using the total values of the coins rather than the number of coins
eg

Additional guidance

\checkmark Unambiguous indication

Tier \& Question				Additional guidance Factor
$\begin{gathered} 4-6 \\ 4 \end{gathered}$	5-7	Mark	Correct response	
		2m or 1 m	Shows all six factors of 12 , in any order eg Shows at least four correct factors one of which must be either 3 or 4, with no incorrect factors or Shows all the correct factors, with not more than two incorrect factors	\checkmark Answer not given in diagrammatic form eg - $1 \times 12,2 \times 6,3 \times 4$ Condone ! Factors repeated Ignore

Tier \& Question				
4-6	$5-7$		Additional guidance	
$\mathbf{5}$		Mark	Correct response	UK rivers
a		1 m	3	\checkmark Unambiguous indication
b		1 m	1000	\checkmark Answer in words

Tier \& Question
$4-6$
$\mathbf{6}$

Tier \& Question	
$4-6$	$5-7$
$\mathbf{7}$	

b
c

Mark	Correct response
$\mathbf{1 m}$	$11: 30$
$\mathbf{1 m}$	5th (September)
$\mathbf{1 m}$	3rd (September)

Additional guidance
Indication of am repeated
eg

- 11:30am
x Incorrect time
eg
- 11:30pm
- 23:30
\checkmark Unambiguous indication
eg, for part (b)
- 5
! Incorrect month given
Ignore

Tier \& Question				Additional guidance	More perimeters
4-6	5-7				
8		Mark	Correct response		
		1 m	50		
		1 m	34		

Tier \& Question	
$4-6$	
10	

Mark Correct response
 1 m Gives the correct change for 1 orange and 1 apple,

 ie $24 p$3 m Gives four more distinct pairs of fruits, together with the correct change for each
or
2m Gives three more distinct pairs of fruits, together with the correct change for each
or
Gives the correct change for one pair including a satsuma and one pair including a banana
eg

- 1 orange and 1 banana: 40 p (39p) and 1 peach and 1 satsuma: $6 p(7 p)$
- 1 banana and 1 satsuma: 41 p (40 p or $42 p$)

1 m Shows or implies the correct cost (a whole number of pence) of 1 apple (30p), 1 banana (14 p or $15 p$) and 1 satsuma (25 p or 24 p)
or
Gives the correct change for 1 peach and 1 apple, and one other pair
eg

- 1 peach and 1 apple: 1 p and 1 apple and 1 banana: 36p (35p)

Fruit

Additional guidance

\checkmark Cost of 1 banana $=15 p$ and/or Cost of 1 satsuma $=24 p$

A complete list of the remaining pairs is as follows (figures in brackets use 15p for a banana and/or 24p for a satsuma)
1 peach and 1 apple: 1 p
1 peach and 1 banana: 17p (16p)
1 orange and 1 banana: 40p (39p)
1 apple and 1 banana: $36 p$ (35p)
1 peach and 1 satsuma: $6 p$ (7p)
1 orange and 1 satsuma: 29p (30p)
1 apple and 1 satsuma: $25 p$ (26p)
1 banana and 1 satsuma: 41 p (40p, 42p)

! Incorrect value (including decimals) used for the price of 1 banana or 1 satsuma

Penalise only the first occurrence of each
eg accept for 2 marks

- 1 peach and 1 apple: $1 p$ 1 peach and 1 banana: $15 p$ (error) 1 orange and 1 banana: $38 p$ 1 apple and 1 banana: 34 p

Spinning
Additional guidance
! Spinners identified using probabilities ie
$\frac{1}{3}$ for part (a) and $\frac{1}{4}$ for part (b)
Mark as 0, 1
\checkmark The only sectors labelled are 2
eg
Coses)
-

Tier \& Question	
$4-6$	$5-7$
12	2

Mark	Correct response	Additional guidance	Time
2 m	Shows the correct time and date, ie		
	1:00 16 November		
	or		
	01:00 16 November		
$\begin{aligned} & \text { or } \\ & 1 \mathrm{~m} \end{aligned}$			
	Shows the correct date or a correct time eg		
	1:00 date incorrect or omitted		
	3:00 16 November		

Tier \& Question		Mark	Correct response	Additional guidance	Remainders
4-6	5-7				
13	3				
		1 m	34		
		1 m	Gives two integers, x then y, such that $x=4 y+3$, provided $\|y\|>3$ eg		
			$19 \div 4$		
			$23 \div$		
			$43 \div$		

Tier \& Question				Sitting comfortably
4-6	5-7			
14	4	Mark	Correct response	Additional guidance
a	a	1 m	Gives both correct answers, ie Chair height: 14 inches Table height: 22 inches	! Incorrect units inserted Ignore
b	b	1 m	Indicates Yes and gives a correct explanation eg - Three-quarters is 75% and $80 \%>75 \%$ - 80% is $\frac{4}{5}$ which is greater than $\frac{3}{4}$ - 80% is 5% more than three-quarters	\checkmark Minimally acceptable explanation eg - 75 - 80% - 20% don't - 80 is bigger than 75 - 5% more/less - Just over three-quarters - $\frac{4}{5}$ is bigger x Incomplete or incorrect explanation eg - It says so on the graph - 80% is about $\frac{3}{4}$ - $80 \%=\frac{3}{4}$

Tier \& Question	
$4-6$	$5-7$
16	6

Mark Correct response

$2 m$
Gives all five values correct and in the correct positions, ie

y	$2 y$	y^{2}
3	6	9
2	4	4
6	12	36

or
$1 m$
Gives at least three values correct and in the correct positions

Additional guidance

Tier \& Question				Wallpaper
$4-6$ 17	$\begin{gathered} 5-7 \\ 7 \end{gathered}$	Mark		
		2m	Indicates No and gives a correct explanation that shows or implies the amount that 11 rolls will decorate and the perimeter of Kate's room eg - 11 rolls papers 20 m , but Kate's room is 21 m altogether - A perimeter of 20 m needs 11 rolls, but Kate's is 1 m bigger than that - $6+4.5=10.5$ $10.5+10.5=21$ with the table continued to show 20, 11 - To paper 21 m she needs 12 rolls	\checkmark Minimally acceptable explanation Provided there is no indication of an incorrect method, accept eg - 21, 11 - 21, 20 - 21, 12 - 12 rolls - 1 more roll is needed \checkmark Half rolls used Condone, eg for 2 m accept - She has 11 but she needs 11.5 ! Incorrect units given Ignore \times For $2 m$, method used is direct proportion eg - 20 m is twice 10 m and the table shows that would need 12 rolls - 14 m is 8 rolls so 21 m is 12 rolls
		$\begin{gathered} \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Shows or implies that 11 rolls will paper 20 m eg - A room of 20 m needs 11 rolls, but Kate's room is bigger than that or Shows or implies the perimeter of the room is 21 m eg - $4.5+6+4.5+6=21$ - $2(4.5+6)=21$ or States clearly the relationship between perimeter and number of rolls needed eg - For every 2 m round the room it goes up by 1 roll - To find the number of rolls divide the length by 2 then add 1	\checkmark Minimally acceptable explanation eg - 20, 11 - There is only just enough for 20 \checkmark Minimally acceptable explanation eg - 21 m - $2 \times 10.5=21$

Tier \& Question					Triangle
$\begin{gathered} 4-6 \\ 19 \end{gathered}$	$\begin{gathered} 5-7 \\ 9 \end{gathered}$				
	a	$2 m$ or 1 m	Gives three correct angles eg - $50^{\circ}, 60^{\circ}, 70^{\circ}$ - $47^{\circ}, 66^{\circ}, 67^{\circ}$ - $53^{\circ}, 54^{\circ}, 73^{\circ}$ Gives three angles that sum to 180° with two differing by 20° eg - $10^{\circ}, 30^{\circ}, 140^{\circ}$ - $40^{\circ}, 60^{\circ}, 80^{\circ}$		
	b	$2 m$ or 1 m	Gives three correct angles eg - $10^{\circ}, 75^{\circ}, 95^{\circ}$ - $18^{\circ}, 71^{\circ}, 91^{\circ}$ - $2^{\circ}, 79^{\circ}, 99^{\circ}$ Gives three angles, including an obtuse angle, that sum to 180° with the acute angles having a difference of 20° eg - $10^{\circ}, 30^{\circ}, 140^{\circ}$ - $1^{\circ}, 21^{\circ}, 158^{\circ}$ - $34^{\circ}, 54^{\circ}, 92^{\circ}$		

Tier \& Question				Additional guidance Rectangle area
4-6	5-7			
20	10	Mark	Correct response	
		$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	60 60 seen or Shows a complete correct method eg - $5 \times 4 \times 3$ or Shows or implies the dimensions of the rectangle are $6(\mathrm{~cm})$ and $10(\mathrm{~cm})$ or Shows or implies the area of one white square is $4\left(\mathrm{~cm}^{2}\right)$	$\times 4$ seen but not linked to the area of a white square

Tier \& Question				Additional guidance	Sixes
	5-7				
21	11	Mark	Correct response		
		1m 1m	Gives a correct value eg - 0.94 - . 94 - $\frac{94}{100}$ - $\frac{47}{50}$ Gives a correct value eg - 0.34 - . 34 - $\frac{17}{50}$! Answers of 94, 34 Mark as 0, 1	

Tier \& Question		Mark	Correct response	Additional guidance Swimming pool
4-6				
22	12			
		$3 m$ or 2m or 1m	Identifies the correct minimum monthly cost ($£ 40.50$) and shows either another correct monthly cost or a correct method for another monthly cost eg - $£ 40.50$ in answer box with $£ 49.17$ shown elsewhere - $£ 40.50$ in answer box with $26.50+2 \times 15$ shown elsewhere or Identifies the correct minimum monthly cost ($£ 40.50$) and shows $£ 486$ and another correct annual cost Gives any correct monthly cost (see additional guidance) eg - $£ 40.50$ - $£ 49.17$ or Shows correct methods for the minimum cost and one other but without a correct result, and gives an answer consistent with their results eg - $26.5+2 \times 7=44.5$ (error) $26.5+2 \times 15$ is more Answer of $£ 44.50$ - $590 \div 12=39.33$ (error) $26.5+2 \times 7=£ 199.50$ (error) Answer of $£ 39.33$ Shows a correct method for a monthly cost but with an incorrect or no answer	! Cost not identified as minimum (answer box left blank) Condone provided there is a correct comparison and no ambiguity eg, accept - $£ 40.50$ is less than $£ 49.17$ eg, do not accept - $£ 56.50, £ 40.50, £ 54.50$ - $26.5+2 \times 15=£ 40.00$ (error) $26.5+2 \times 7=£ 40.50$ $7.25 \times 8=£ 58$ which is more Some different cost options (with the annual equivalents in brackets) are - Annual memberships: $£ 49.17$ ($£ 590$) $230+2 \times 180=590$ $590 \div 12=49.1666$ (condone 49.16) - Monthly memberships: $£ 56.50$ ($£ 678$) $26.5+2 \times 15$ - Casual swims: $£ 54.40$ ($£ 652.80$) $3.5+2 \times 1.65=6.8$ $6.8 \times 2 \times 4$ (condone 1 month $=4$ weeks) - Add-on memberships: $£ 40.50$ ($£ 486$) $26.5+2 \times 7 \text { (cheapest) }$ - Family swims: $£ 58.00$ ($£ 696$) $7.25 \times 2 \times 4$ (condone 1 month $=4$ weeks)

Tier \& Question	
$4-6$	$5-7$
23	13

Marking overlay available

Mark

Shows correct use of compasses to create a shape with two sides of 6 cm and/or two sides of 8 cm eg

- A kite with side lengths 6 cm and 8 cm , and correct compass arcs shown
- A rhombus drawn with side length 6 cm , and correct compass arcs shown
- A quadrilateral drawn with two side lengths of 8 cm , and correct compass arcs shown
or
Completes the top or the bottom half of the rectangle within the tolerance as shown by the overlay
or
Correctly draws the construction arcs either with an incorrect rectangle drawn or no rectangle drawn

Diagonal

Additional guidance

\times For $2 m$ or 1m, given diagonal not used
x Spurious compass arcs that have an incorrect radius
! Overlay may need turning over

Correct response

Gives a correct probability
eg

- $\frac{29}{100}$
- 0.29
- 29%

Gives the values 8,8 and 10 in the correct order

26 seen
or
Shows or implies $\div 13$
eg

- $104 \div 13$
- $\div 13$ seen
- Answer 32, 32, 40

Additional guidance

! Probability

See general guidance on page 16

! 8 seen

Do not accept for 1 m unless $\div 13$ is implied
$\times 13$ seen without the operation

Tier \& Question				Additional guidance	Volume
4-6	5-7				
25	15	Mark	Correct response		
		$\begin{gathered} 2 m \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	10 Shows or implies that the cuboid is 2 cubes high, 2 cubes wide and 4 cubes long eg - $4 \times 2 \times 2$ seen - Lines drawn on the diagram showing the shaded end is made from 4 cubes and the longest side is made from 8 cubes, ie or Shows a complete correct method with not more than one computational error eg - $40 \times 20 \times 20 \div 16=1000$ $\sqrt[3]{1000}=100$ (error)		

Tier \& Question	
$4-6$	$5-7$
26	16

Chinese growth

a	a
b	b

1 m eg

- 0.2 cm per year
- $\frac{1}{5} \mathrm{~cm}$ per year
$2 m$

or

1 m
Shows the digits 156
or
Shows the digits 36
eg

- 0.36
or
Shows a complete correct method with not more
than one computational error
eg
- 1.2×1.3
- $1.2 \times 0.3+1.2$
- $1.2 \div 10, \times 3,+1.2$
- 10% of $1.2=0.12$
$30 \%=0.12 \times 3=0.26$ (error)
$0.26+1.2=1.46$
or
The only error is to use the height from 1957, ie gives an answer of 1.43 m or 143 cm

Tier \& Question

$4-6$	$5-7$
27	17

Mark	Correct response
$\mathbf{1 m}$	$38.4(\ldots)$ or 38.5 or 12.25π

Additional guidance

12.25 written as a fraction or mixed number

! Answer of 38

Accept with a correct method or more accurate value seen

Tier \& Question		Mark	Correct response	Additional guidance	Lemons
4-6	$\begin{gathered} 5-7 \\ 18 \end{gathered}$				
	a	1 m	August (20)06		
			September (20)06		
			October (20)06		
	b	1 m	Gives one, two or all of the months June, July, August, or gives a description of these months eg - Summer - Middle of the year - June-August	x Non-general response eg - Summer 2006 - July 2002	

Mark

$3 m$
Gives a correct rounded or unrounded value eg

- 9.7797 (kg)
- 10 (kg)
or
2m
Gives the correct weight for a BMI of 24.9 or 25 eg
- Value of 85.2203 rounded or unrounded seen
- Value of 85.5625 rounded or unrounded seen
or
1 m
Gives the man's current BMI
eg
- Value of $28,27.8$ or $27.7(\ldots$...) seen
or
Attempts to find the weight for a BMI of 24.9 or 25
eg
- $\frac{W}{1.85^{2}}=24.9$ seen
-

Weight	BMI
90	26.3
83	24.3
84	24.5

Additional guidance

Throughout the question units omitted
$\times 90$ seen without a more accurate value

! Trial and improvement for 1 m

Accept provided a BMI between 24 and 26 (exclusive) is found

The following may be useful

Weight	BMI
88	25.7
87	25.4
86	25.1
85	24.8
84	24.5
83	24.3

Mark Correct response

2m
Indicates 'Michael' and gives a correct explanation that compares a calculation or a calculated value with one read from the graph
eg

- 7×320 is not 380
- 20% of $320=2 \times 32=64,320+64=384$, which is about correct
- $380-320=60,60 / 320=0.1875$, which is about 20%
or
1m Gives a relevant calculated value eg
- $7 \times 320=2240$
- 20% of $320=2 \times 32=64$
- $380-320=60,60 / 320=0.1875$
or
Indicates 'Michael' and gives a correct explanation that compares a calculation or a calculated value with one read from the graph but makes one error in calculation or reading from the graph

Keeling curve

Additional guidance

Mark Correct response
$\frac{3}{2}$ or equivalent fraction or decimal
or
1 m Shows the perimeter of the L-shape is 24
or
Shows a correct expression for the perimeter of the L-shape
eg

- $17+y+7-y$
or
Shows or implies a correct expression for the area of the L-shape
eg
- $2 y+21$
- $5 y+3(7-y)$
- $35-2(7-y)$

L-shape reasoning

Additional guidance

Tier \& Question				Power time
4-6	5-7			
	24	Mark	Correct response	Additional guidance
	a	1 m	Gives a correct justification eg - $24 \times 60=1440$ and $1000<1440<10000$ - 1000 minutes would be $16.6(\ldots)$ hours and 10000 minutes would be $166.6(\ldots)$ hours but 24 hours is between the two	\checkmark Minimally acceptable justification eg - 1000,1440 and 10000 seen - 24×60 is between 1000 and 10000 - $16.6(\ldots$) (or 16.7 or 17), 24 and $166.6(\ldots)$ (or 167 or 170) seen - 1.44×10^{3} ! Sight of 86400 As this may be working for the second part of the question, ignore x Incomplete or incorrect justification eg - 1440 is between 10^{3} and 10^{4}
	b	1 m	Indicates the correct answer, ie \qquad \qquad	\checkmark Unambiguous indication eg - Correct answer ticked

Mark	Correct response
$\mathbf{2 m}$ or	5.8
$\mathbf{1 m}$	Shows or implies correct evaluation of at least the denominator eg
	- $173 .(\ldots)$ seen
	- 5.7
	- digits 577 or digits 578 seen
	or
	152.0 (finds the fourth root rather than multiplying by 4

Circle around

Additional guidance
x Equivalent fractions or decimals

Index to mark scheme for Paper 2

Tier		Question	Page
4-6	5-7		
1		Order matters	42
2		Pentagons or not	43
3		Multiple coins	44
4		Factor	45
5		UK rivers	45
6		Family flights	46
7		High tide	46
8		More perimeters	47
9		Fifty percent	47
10		Fruit	48
11	1	Spinning	49
12	2	Time	49
13	3	Remainders	50
14	4	Sitting comfortably	50
15	5	PIN	51
16	6	Finding values	51
17	7	Wallpaper	52
18	8	When is it true?	53
19	9	Triangle	53
20	10	Rectangle area	54
21	11	Sixes	54
22	12	Swimming pool	55
23	13	Diagonal	56
24	14	Word game	56
25	15	Volume	57
26	16	Chinese growth	58
27	17	Squarea	58
	18	Lemons	59
	19	Bank of England	60
	20	Motorway	61
	21	Body Mass Index	62
	22	Keeling curve	63
	23	L-shape reasoning	63
	24	Power time	64
	25	Circle around	64

Section B:
 Using the test outcomes

The following subsections provide information about interpreting the outcomes of the year 9 optional mathematics tests. The first subsection explains how teachers can use the test scores to help make judgements on the national curriculum levels attained by pupils in mathematics. The second subsection presents useful information obtained during the development of the tests that may be used to support making qualitative teacher judgements.

Level thresholds

In order to make use of the information in this section, you must administer the tests according to the guidance in Section A: Formal administration. It is particularly important that you observe the time limits given, follow the test instructions, and mark the questions according to the mark scheme. If you have used the tests in a different context to provide qualitative information about pupils' strengths and weaknesses then the information derived from this section will not be applicable and you should refer to the Useful information subsection.

In a formal administration pupils need to take both test booklets in order for the total marks to be translated reliably into a national curriculum level for mathematics overall.

The following tables give an indication of the national curriculum levels for pupils attaining each of the mark ranges in the tests.

Tier 4-6

Level	Mark range
Below level 4	$0-30$
4	$31-49$
5	$50-71$
6	$72-120$

Tier 5-7

Level	Mark range
Below level 5	$0-20$
5	$21-38$
6	$39-64$
7	$65-120$

Variability of results

Any scores derived from a test are subject to some variation according to the precise circumstances under which the test has been sat and marked. This does not mean that pupils get 'incorrect' test results, but it does mean that some caution should be exercised in translating scores which are very close to a threshold mark into an overall mathematics level for the pupil. The level thresholds provided are indicative, and teachers should be aware that differences in the status, administration and marking procedures open the tests to a potentially broader range of variation than the former statutory national curriculum tests.

Useful information

What are we assessing?

The 2008 key stage 3 curriculum specifies mathematics in terms of Key Processes (Representing, Analysing, Interpreting \& Communicating) and Range and Content (Number, Algebra, Geometry, Statistics). It can be thought of as an array.

		Key processes		
		Representing	Analysing	Interpreting \& Communicating
	Number			
	Algebra			
	Geometry			
	Statistics			

Any mathematical task requires the deployment of various different combinations of Key Processes and Range and Content, in other words as occupying particular cells in the table above. Each question in this test can therefore also be attributed to one or more cells. Doing this for all the questions in the test (from both tiers) gives the following picture of how the year 9 optional test samples from the 2008 curriculum.

New questions

To underline the emphases in the new curriculum, many questions demand skills of representing and/or interpreting as well as analysing. Broadly speaking, representing is about choosing the technique(s) and/or information to use, analysing is about using the chosen technique(s) and interpreting is about making sense of the answer. Therefore many questions are not explicit about the approach to be taken and pupils need to make decisions from the outset about what to do. This can apply equally to a question set in a 'realistic' context and one that is purely mathematical.

	Tier \& Question			Nuestion name
Paper	$4-6$	$5-7$	Notes	
$\mathbf{2}$	$\mathbf{6}$		Family flights	It is deliberate that the question does not tell pupils to calculate the total cost for each airline - this is a decision for them to make (there is really no sensible alternative).
$\mathbf{2}$	$\mathbf{1 9}$	$\mathbf{9}$	Triangle	There are several possible approaches. An algebraic method can be fruitful in both parts; if trial and improvement is used the decision needs to be made where to start - the equilateral triangle is an insightful choice.

It is often the case that, once the initial decisions have been make, the problem may demand relatively straightforward techniques.

Tier \& Question			Notes	
Paper	$4-6$	$5-7$	Question name	Nots
$\mathbf{1}$	$\mathbf{2 4}$	$\mathbf{1 5}$	Adults studying	Once a decision has been made what to do, all that is required is some very approximate reading of the bar chart and addition of whole numbers.

Interpreting and communicating may involve working with results or information that is already given, or may be based on the results of the pupil's own analysis. It may be a substantial part of the activity or it may be just a small detail, such as rounding the answer correctly because of the context.

Tier \& Question			
Paper	$4-6$	$5-7$	Question name
1	23	14	Wrapping
2	17	7	Wallpaper

Notes

In this question, the main problem is to interpret the measurements that are given and to visualise how they relate to the problem. The final answer is simply a number so communication skills are not much in evidence.

Once a value for the perimeter of the floor has been obtained and the table has been extended, a decision needs to be made about whether the answer is 'Yes' or 'No', and then the reasoning has to be explained.

Qualitative assessment information

Looking at pupil's responses to the questions in the tests can give a wide variety of qualitative assessment information. The following list is not exhaustive but aims to identify some significant themes and questions that may provide insights into them.

Units

Some of the questions in these tests do not provide units in the answer space and the mark schemes do not penalise omission or incorrect choice of units. To see whether your pupils give appropriate units with their answers look at their responses to the following questions.

Tier \& Question			Question name	Notes
Paper	4-6	5-7		
1	21	12	Triangle two	Are units used in the explanation? If so, are they units of area? Are 'squares' used in recognition that the units are necessary but unknown?
2	10		Fruit	Money. Is ' p ' indicated?
2	17	7	Wallpaper	Are units used for perimeter in the explanation? Is there confusion about which numbers need units?
2		20	Motorway	Distance (m and $k m$), money ($£$). Is conversion of units used in calculation? Are units ($£$) given with answers?
2		21	Body Mass Index	Units of mass and length. Is the correct one used with the answer? If a BMI is calculated, is a unit (incorrectly) given with it?
2		23	L-shape reasoning	Is a unit (eg cm) incorrectly given with a value for y ?

Quality of written communication

There are broadly two aspects to the quality of written responses. The first is making appropriate choices about what to communicate and how. The second is about the technical and linguistic accuracy of the response. Even among responses that get the same marks there can be wide variations in quality, and examination of the following questions can provide insights into this.

Tier \& Question			Paper
$\mathbf{1}$	$\mathbf{4 - 6}$	$5-7$	Question name
$\mathbf{1}$	$\mathbf{2 5}$	15	Adults studying
$\mathbf{1}$	$\mathbf{2 6}$	17	Coins and prob- ability
$\mathbf{1}$		25	Which is greater?
$\mathbf{2}$	$\mathbf{6}$		Family flights
$\mathbf{2}$	$\mathbf{2 2}$	12	Swimming pool
$\mathbf{2}$		$\mathbf{2 2}$	Keeling curve

Notes

Does a correct explanation justify an assertion that the percentages add up to more than 100 ? If so, are the figures used over-precise?

As with many mathematical explanations, the best ones will be a mixture of words and symbols/calculations.

In part (a), does the explanation use correct technical terms - for example, 'angles on a straight line'?

An efficient explanation does not involve evaluating the expressions, particularly in part (a).

Despite the nature of the question, the marks for this item are all to do with correct calculations. Nevertheless pupils' responses will exhibit differing degrees of engagement with the demand to communicate a recommendation.

Full marks are not available unless there is a comparison of at least two prices. However, even within correct responses there is scope for wide variation in the extent to which pupils produce a thorough and systematic response.

The best explanations will engage with the error in John's statement and not try to be over-precise in the values read from the graph.

Choice of method

In many questions pupils need to choose the method to use and there may be a number of options. A good choice is efficient but uses techniques that the individual is comfortable with. Looking at the responses to these questions will tell something about the sorts of choices pupils make.

Tier \& Question			Question name	Notes
Paper	4-6	5-7		
1	19	10	Ticket price	Using simultaneous equations is a 'clever' choice but a poor one, even if the pupil's algebra is good, as there are more efficient methods.
1	20	11	Tests	A scatter graph would be an excellent choice of method in part (b), although the lack of a grid makes it an unlikely one.
2	10		Fruit	To produce a correct solution efficiently it is important to be systematic. It is only necessary to use four of the five fruits to generate enough combinations and a good choice is to minimise the number of different fruits used.
2	17	7	Wallpaper	Does the pupil try to work out how big a room can be decorated with 11 rolls, or how many rolls are needed for the room shown? With the figures given the first way is easier.
2	22	12	Swimming pool	Flexibility works well in this question. Some price options are clearly expensive so the best responses will deliberately limit which possibilities they consider.
2		23	L-shape reasoning	Trial and improvement is a viable method, and may be a good choice for a pupil who is insecure with algebraic manipulation. It should not take many iterations to realise that the perimeter is independent of y.

Interpreting the problem

Many of the questions are based on real data or realistic contexts. Where a question is based on a real-life problem it is generally necessary to make simplifying assumptions in order to represent it as a mathematical problem. Pupils often do this almost unconsciously, but an aspect of their mathematical development should be an increased awareness of the assumptions made. It may also be necessary to interpret the answer to the mathematical result to provide a full answer to the original problem. To see whether your pupils have awareness of these issues you could look at their responses to the following questions.

Tier \& Question				
Paper	4-6	5-7	Question name	Notes
1	6		Tennis court	Is there any indication of engagement with the uncertainty of the answer? For example, is the answer qualified with 'about' or similar?
1	11	2	Dice	Do answers for A and C show awareness that the dice may not be fair?
1	14	5	Barcelona	In part b) does the answer read the graph or interpret it? Is the rainfall reading given for October, or is it described as 'wetter'?
1	23	14	Wrapping	Does the answer make an allowance for an 'overlap'? Answers of 45 cm or 60 cm are probably based on no overlap.
2	22	12	Swimming pool	Engagement with the real situation on which the question is based can point the way to which price plans are likely to prove most economical. Working down the price list from top to bottom is a sign that the context is being ignored.
2		18	Lemons	In part (b) it is necessary to interpret 'most expensive' (as 'higher on the graph'). It is also desirable to engage with the real situation in deciding the kind of answer to give - 'summer' shows a level of awareness that 'August' does not.

Calculator use

Additional information about some aspects of calculator use can be gleaned from the responses to some questions from paper 2. In particular, whether or not their answer is creditworthy, do they round their answer appropriately and do they round prematurely in working? In questions involving money is the calculator display interpreted correctly? Relevant questions are as follows.

Tier \& Question			Question name	Notes
Paper	4-6	5-7		
2	10		Fruit	What choice is made about rounding the price of a banana or a satsuma? Is there evidence of confusion between pounds and pence?
2	13	3	Remainders	Is there confusion between remainders and decimals? Is a calculator used inappropriately in this question?
2	22	12	Swimming pool	Are sensible decisions made about how to deal with weeks, months and years? Is the calculator display interpreted correctly in terms of money?
2	27	17	Squarea	Is there premature rounding in working? And, on the other hand, is the final answer rounded to an appropriate degree of accuracy?
2		20	Motorway	Are the numbers of each type of light rounded appropriately to a whole number, based on the context?
2		25	Circle around	Is there evidence of efficient calculator use, for example use of the power function and perhaps the reciprocal button? Is the answer rounded correctly?

Level 8 and above

Although these tests do not have overall level thresholds corresponding to level 8 performance, there are some questions where the highest attainers have the opportunity to show the combination of technical competence and mathematical insight which is most characteristic of those working at this level. Here are some examples.

Tier \& Question			Question name	Notes
Paper	4-6	5-7		
1		26	Area triangle	The correct answer will most often be obtained as the difference in area of the two right-angled triangles. Only pupils with insight and a very firm concept of area of a triangle will calculate the area directly using 4 cm as the base and 8 cm as the height.
2		9	Triangle	The suggestions under 'Taking it further' below have scope to stretch bright pupils. Only the very best will think of using algebra without being prompted.
2		20	Motorway	It is possible to identify the cheaper type of light by comparing the ratio of heights to the ratio of costs per light. Asking high attaining pupils 'How can you tell which type of light gives the cheaper total without working out the total cost' may elicit some interesting responses.
2		21	Body Mass Index	It is extremely tempting (but entirely unnecessary) to work out the man's current BMI. Pupils who set up and solve an equation to find the solution without either going down this dead end or using trial and improvement are likely to be working above level 7 .
2		23	L-shape reasoning	It takes insight to recognise that the perimeter of the L-shape is 24 cm without setting up an equation in which every y cancels out. Depending how the L-shape is divided, different equations may be obtained. The highest attainers are more likely to go straight to $2 y+21=24$ with no working.

Taking it further

Some questions can form the starting points for more extensive pieces of mathematical work in the classroom. Some suggestions are outlined below.

Dice (Paper 1, tier 4-6 question 11; tier 5-7 question 2)

- Is the probability of a score of 5 on dice B more or less than $\frac{1}{6}$? Discuss.
- How would you estimate the actual probability?

An obvious way is to do an experiment, and one way of managing this is to stick two centicubes together, roll the 'dice' so formed and use 'point up' to represent one way of getting a score of 5 . There is a discussion to be had about why 'point down' might not be a good representation.

- If you do an experiment, how many times do you need to roll the 'dice' to estimate the probability to a certain degree of accuracy?
One way of arriving at a figure is to see how many trials it takes with a normal fair dice to get the degree of accuracy required and then do the same number of trials with your dice B.

Dividing squares (Paper 1, tier 4-6 question 15; tier 5-7 question 6)

- Is it possible to split a 5×5 square into 8 squares? Yes (an answer is in the mark scheme) but it's not obvious. Is it possible with a 6×6 square? How can you tell? It is tempting (and to some extent fruitful) to translate this into a number problem. You can make 36 from 8 squares:
$6^{2}=3^{2}+3^{2}+2^{2}+2^{2}+2^{2}+2^{2}+1^{2}+1^{2}$
$36=9+9+4+4+4+4+1+1$
But this doesn't give you a way of splitting a 6×6 square into 8 squares - try it!
- Never mind the size of the squares (use plain paper), what are the possible numbers of smaller squares into which you can split a square? Obviously 2 and 3 are impossible and 4 is easy. 5 is impossible but 6,7 and 8 can be done. How do you do 7 ?

This shows how you can always do 3 more squares. So, if you can do 6,7 and 8 you must be able to do every greater whole number.

Triangle (Paper 2, tier 4-6 question 19; tier 5-7 question 9)

- With the constraints in part (a), what are the smallest and largest whole-number values for the size of the smallest angle?
As a challenge, what precisely are these values (there is scope for algebra here)?
- Similarly, with the constraints in part (b), what values are possible for the obtuse angle?

Diagonal (Paper 2, tier 4-6 question 23; tier 5-7 question 13)

- What other rectangles could have the dotted line as a diagonal?

If you marked the corners of them all, what would the diagram look like?

Multiple coins (Paper 2, tier 4-6 question 3)

- How many ways are there of making 10p, 20p, 30p, 40p, 50p etc using 10p and 20p coins? What is the pattern here? Why is the pattern like this?

Qualifications and Curriculum Development Agency
53-55 Butts Road
\section*{Earlsdon Park}
Coventry CV1 3BH
Telephone 03003033013
Textphone 03003033012
Fax: 03003033014
Email: assessments@qcda.gov.uk
www.qcda.gov.uk/tests

For more copies

QCDA Orderline, PO Box 29, Norwich NR3 1GN
Tel: 03003033015 Fax: 03003033016
Email: orderline@qcda.gov.uk
Website: orderline.qcda.gov.uk
QCDA/11/4594/4597 (Pupil pack)

